新能源新闻资讯
政策|项目|技术

风力发电机组并网运行方式分析

2.1风力发电系统的基本结构和工作原理

风力发电系统从形式上有离网型、并网型。离网型的单机容量小(约为0.1~5 kW,一般不超过10 kW),主要采用直流发电系统并配合蓄电池储能装置独立运行;并网型的单机容量大(可达MW级),且由多台风电机组构成风力发电机群(风电场)集中向电网输送电能。另外,中型风力发电机组(几十kW到几百kW)可并网运行,也可与其它能源发电方式相结合(如风电一水电互补、风电一柴油机组发电联合)形成微电网。并网型风力发电的频率应保持恒等于电网频率,按其发电机运行方式可分为恒速恒频风力发电系统和变速恒频风力发电系统两大类。

2.1.1恒速恒频风力发电系统

恒速恒频风力发电系统中主要采用三相同步发电机(运行于由电机极对数和频率所决定的同步转速)、鼠笼式异步发电机(SCIG)。且在定桨距并网型风电机组中,一般采用SCIG,通过定桨距失速控制的风轮使其在略高于同步转速的转速(一般在(1~1.05)n)之间稳定发电运行。如图2.1所示采用SCIG的恒速恒频风力发电系统结构示意图,由于SCIG在向电网输出有功功率的同时,需从电网吸收滞后的无功功率以建立转速为的旋转磁场,这加重了电网无功功率的负担、导致电网功率因数下降,为此在SCIG机组与电网之间设置合适容量的并联电容器组以补偿无功。在整个运行风速范围内(3 m/s <<25 m/s),气流的速度是不断变化的,为了提高中低风速运行时的效率,定桨距风力发电机普遍采用三相(笼型)异步双速发电机,分别设计成4极和6极,其典型代表是NEGMICON 750 kW机组。

恒速恒频风力发电系统具有电机结构简单、成本低、可靠性高等优点,其主要缺点为:运行范围窄;不能充分利用风能(其风能利用系数不可能保持在最大值);风速跃升时会导致主轴、齿轮箱和发电机等部件承受很大的机械应力。

2.1.2变速恒频风力发电系统

为了克服恒速恒频风力发电系统的缺点,20世纪90年代中期,基于变桨距技术的各种变速恒频风力发电系统开始进入市场,其主要特点为:低于额定风速时,调节发电机转矩使转速跟随风速变化,使风轮的叶尖速比保持在最佳值,维持风电机组在最大风能利用率下运行;高于额定风速时,调节桨距以限制风力机吸收的功率不超过最大值;恒频电能的获得是通过发电机与电力电子变换装置相结合实现的。目前,变速恒频风电机组主要采用绕线转子双馈异步发电机,低速同步发电机直驱型风力发电系统亦受到广泛重视。

(1)基于绕线转子双馈异步发电机的变速恒频风力发电系统

绕线转子双馈异步发电机(DFIG)的转子侧通过集电环和电刷加入交流励磁,既可输入电能也可输出电能。图2.2为基于绕线转子双馈异步发电机的变速恒频风力发电系统结构示意图,其中,DFIG的转子绕组通过可逆变换器与电网相连,通过控制转子励磁电流的频率实现宽范围变速恒频发电运行,其工作原理为:转子通入三相低频励磁电流形成低速旋转磁场,该磁场的旋转速度与转子机械转速相叠加,等于定子的同步转速,即=从而在DFIG定子绕组中感应出相应于同步转速的工频电压。当发电机转速随风速变化而变化时(一般的变化范围为的30%,可双向调节),调节转子励磁电流的频率即可调节以补偿的变化,保持输出电能频率恒定。

2.2所示变速恒频方案由于是在转子电路中实现的而流过转子电路的功率是由DFIG转速运行范围所决定的转差功率,一般只为额定功率的1/4—1/3,故显著降低了变换器的容量、成本。此外,调节转子励磁电流的有功、无功分量,可独立调节发电机的有功、无功功率,以调节电网的功率因数、补偿电网的无功需求。事实上,由于DFIG转子采用了可调节频率、幅值、相位的交流励磁,发电机和电力系统构成了“柔性连接”。德国Dewind公司生产的D6型机组(其额定功率为1 250 kW,起动、额定、切出风速分别为2.5 m/s,13 m/s,28 m/s)是采用这种变速恒频方案的典型产品。

(2)基于低速同步发电机的直驱型风力发电系统

直驱型风力发电系统中,风轮与永磁式(或电励磁式)同步发电机直接连接,省去了常用的升速齿轮箱。图2.3为永磁直驱型变速恒频风力发电系统结构示意图,风能通过风机和永磁同步发电机(PMSG)转换为PMSG定子绕组中频率、幅值变化的交流电,输入到全功率变换器中(其通常采用可控PWM整流或不控整流后接DC/AC变换),先经整流为直流,然后经三相逆变器变换为三相工频交流电输出。该系统通过定子侧的全功率变换器对系统的有功、无功功率进行控制,并控制发电机的电磁转矩以调节风轮转速,实现最大功率跟踪。与基于DFIG的风力发电系统相比,该系统可在较宽的转速范围内并网,但其全功率变换器的容量较大。与带齿轮箱的风力发电系统相比,该系统提高了效率与可靠性、降低了运行噪声,但发电机转速低,为获得一定的功率,发电机应具备较大的电磁转矩,故其体积大、成本高。

2.2现行风能并网方法综述

自从上世纪以来,学术界已经提出了有很多种风能并网方案并且应用在实际的风电

场并网建设中。总得来说,目前风力发电的并网方式大致可以分为异步发电机、同步发电机和双馈发电机三种方式。

2.2.1异步发电机组的并网

因为风力机为低速运转的动力机械,在风力机与异步发电机转子之间经增速齿轮传动来提高转速以达到适合异步发电机运转的转速。一般与电网并联运行的异步发电机多选用4极或6极电机,因此异步电机转速必须超过1500r/rain或1000r/min才能运行在发电状态向电网送电。根据电机理论,异步发电机并入电网运行时,是靠滑差率来调整负荷的,其输出的功率与转速近乎成线性关系。因此对机组的调速要求,不像同步发电机那么严格精确,不需要同步设备和整步操作,只要转速接近同步转速时就可并网。但异步发电机在并网瞬间会出现较大的冲击电流(约为异步发电机额定电流的4~7倍),并使电网电压瞬时下降。随着风力发电机组单机容量的不断增大,这种冲击电流对发电机自身部件的安全及对电网的影响也愈加严重。过大的冲击电流,有可能使发电机与电网连接的主回路中的自动开关断开;而电网电压的较大幅度下降,则可能会使低压保护动作,从而导致异步发电机根本不能并网。当前在风力发电系统中采用的异步发电机并

网方法有以下几种:

(1)直接并网

这种并网方法要求在并网时发电机的相序与电网的相序相同,当风力驱动的异步发电机转速接近同步转速时即可自动并入电网;自动并网的信号由铡速装置给出,而后通过自动空气开关合闸完成并网过程。但如上所述,直接并网时会出现较大的冲击电流及电网电压的下降,因此这种并网方法只适合用于异步发电机容量在百千瓦级以下而电网容量较大的情况下。我国最早引进的55KW风力发电机组和自行研制的50Kw风力发电

机组都是采用这种方法并网的。

(2)降压并网

这种并网方法是在异步电机与电网之间串接电阻或电抗器或者接入自耦变压器,以达到降低并网合闸瞬间冲击电流幅值及电网电压下降的幅度。因为电阻、电抗器等元件要消耗功率,在发电机并入电网以后,进入稳定运行状态时,必须将其迅速切除。这种并网方法适用于百千瓦级以上、容量较大的机组,显而易见这种并网方法的经济性较差。我国引进的200KW异步发电机组,就是采用这种并网方式,并网发电机每相绕组与电网之间皆串接有大功率电阻。

(3)通过晶闸管软并网

这种并网方法是在异步发电机定子与电网之间通过每相串入一只双向晶闸管连接起来,三相均有晶闸管控制,双向晶闸管的两端与并网自动开关的动合触头并联。接入双向晶闸管的目的是将发电机并网瞬间冲击电流控制在允许的限度内。其并网的过程如下:当风力发电机组接收到由控制系统内微处理器发出的启动命令后,先检查发电机的相序与电网的相序是否一致,若相序正确,则发出松闸命令,风力发电机组开始启动。

当发电机转速接近同步转速时(约为99%~100%同步转速),双向晶闸管的控制脚同时由180度到0度逐渐同步打开;与此同时,双向晶闸管的导通角则同时由0度到180度逐渐增大,此时并网自动开关未动作,动合触头未闭合,异步发电机即通过晶闸管平稳的并入电网;随着发电机转速继续升高,电机的滑差率渐趋于零。当滑差率为零时,并网自动开关动作,动合触头闭合,双向晶闸管被短接,异步发电机的输出电流将不再经双向晶闸管,而是通过已闭合的自动开关触头流入电网。在发电机并网后,应立即在发电机端并入补偿电容,将发电机的功率因数提高到0.95以上。

该种软并网方法的特点是通过控制晶闸管的导通角,将发电机并网瞬间的冲击电流值限制在规定的范围内(一般为1.5倍额定电流以下),从而得到一个平滑的并网瞬态过程。在所示的软并网线路中,在双向晶闸管两端并接有旁路并网自动开关,并在零转差率时实现自动切换,在并网瞬态过程完毕后,即将双向晶闸管短接。与此种软并网连接方式相对应的另一种软并网连接方式是在异步发电机与电网之间通过双向晶闸管直接连接,在晶闸管两端没有并接旁路并网自动开关,双向晶闸管既在并网过程中起到控制冲击电流的作用,同时又作为无触头自动开关,在并网后继续存在于主回路中,这种软并网方连接方式可以省去一个并网自动开关,因而控制回路较为简单,而且避免了有触头自动开关触头弹跳、沾着及磨损等现象,可以保证较高的开关频率。但这种连接方式需选用电流允许值大的高反压双向晶闸管,这是因为双向晶闸管中通过的电流需满足能通过异步发电机的额定电流值,而具有旁路并网自动开关的软并网连接方式中的高反压双向晶闸管只要能通过较发电机空载电流略高的电流就可以满足要求。这种软并网连接方式的并网过程与上述具有并网自动开关的软并网连接方式的并网过程类似,在双向晶闸管开始导通阶段,异步电机作为电动机运行,但随着异步发电机转速的升高,滑差率渐渐接近与零,当滑差率为零时,双向晶闸管已全部导通,并网过程结束。

晶闸管软并网技术对晶闸管器件及与之相关的晶闸管触发电路提出了严格的要求,即晶闸管器件的特性要求一致、稳定以及触发电路可靠,只有发电机主回路中的每相的双向晶闸管特性一致,控制极触发电压,触发电流一致,全开通压降相同,才能保证可控硅导通角在0度~1踟度范围内同步逐渐增大,才能保证发电机三相电流平衡。目前在晶闸管软并网方法中,根据晶闸管的通断状况,触发电路有移相触发和过零触发两种方式。移相触发会造成电机每相电流为正负半波对称的非正弦波(缺角正弦波)含有较多的奇次谐波分量,这些谐波会对电网造成污染公害,必须加以限制和消除。过零触发是在设定的周期内,逐步改变晶闸管的导通周波数。最后达到全部导通,使发电机平稳并入电网,因而不产生谐波干扰。

通过晶闸管软并网法将风力驱动的异步发电机并入电网是目前国内外中型及大型号风力发电机组中普遍采用的。中国引进和自行开发研制的250、300、600KW的并网型异步风力发电机组,都是采用这种并网技术。

2.2.2同步发电机组并网

同步发电机在运行的时,由于它既能输出有功功率,又能提供无功功率,周波稳定,电能质量高,已被电力系统广泛应用。然而,把它移植到风力发电机组上使用却不甚理想,这是由于风速时大时小,随机变化,作用在转子上的转矩极不稳定,并网时其调速性能很难达到同步发电机所要求的精度,并网后若不进行有效地控制,常会发生无功振荡与失步等问题,在重载下尤为严重,这就是相当长的时间内,国内外风力发电机组很少采用同步发电机的原因。但近年来随着电力电子技术的发展,通常在同步发电机与电网之间采用变频装置,从技术上解决了这些问题,采用同步发电机的方案又引起了人们的重视。

同步发电机常用的并网方式有:

(1)准同期并网方式

准同期就是准确周期。用准同期法进行并列操作,发电机组电压必须相同,频率相同以及相位一致,这可通过装在同期盘上的两块电压表、两块频率表以及同期表和非同期指示灯来监视。

(2)自同期并网方式

自同期并列操作是将一台未加励磁电流的发电机组升速到接近于电网频率,滑差角频率不超过允许值且机组的加速度小于某一给定值的条件下,首先合上断路器开关接着合上励磁开关,给转子上加励磁电流,在发电机电动势逐渐增长的过程中由系统将发电机拉入同步运行。

风力发电系统中常见的几种同步发电机的并网:

(1)同步发电机的并网

同步发电机的并网由风力机驱动同步发电机经变频装置与电网并联.这种系统并联运行的特点如下:

1)由于采用频率变换装置进行输出控制,因此并网时没有电流冲击,对系统几乎没有影响。

2)为采用交一直一交转换方式,同步发电机组工作频率与电网频率是彼此独立的.风轮及其发电机的转速可以变化,不必担心发生同步发电机直接井网运行可能出现的失步问题。

3)由于频率变换装置采用静态自励式逆变,虽然可以调节无功功率,但是有高频电流流向器电网。

4)在风电系统中使用阻抗匹配和功率跟踪反馈来调节输出负荷,可使风力发电机组按最佳效率运行,向电网输送更多的电能。

(2)直驱交流永磁同步发电机组的并网

由风力机直接驱动低速交流发电机,通过工作速度快.驱动功率小、导通压降低的IGBT逆变器井网。这种系统并联运行的特点如下:

1)由于不采用齿轮箱,机组水平轴向的长度大夫减小,电能生产的机械传动路径缩短,避免了因齿轮箱旋转而产生的损耗,噪音等。

2)由于发电机具有大的表面,散热条件更有利,使发电机运行时的温升减低.减小发电机温升的起伏。

2.5为采用交流同步发电机的典型电能装置转换电路。整个并网发电系统主要由同步发电机、并网装置组成。

三相同步发电机输出的交流电流采用不可控整流器整流为直流以后,经过直流滤波

环节,送入到DA/Ac逆变器的输入端,逆变为电压、频率、相角、功率因数和谐波都符合电网要求的电能,再经过交流滤波环节后并入电网。

2.2.3双馈发电机组并网

2.6为交流双馈发电机的典型电能转换电路。整个并网发电系统主要由双馈发电机、双脉冲整流器组成。

这种并网方案的特点是在发电机侧和电网侧分别加入脉冲整流器,在低风速的情况下,发电机输出的交流电压经过电机侧脉冲整流器升压后,可以满足电网侧脉冲整流器的正常工作。

2.3当前风能并网方案存在的问题

从上述分析中可以知道目前并网风力发电系统常用的风力发电机有异步发电机、同步发电机和双馈发电机等。异步发电机通常采用的并网方式主要有直接并网、串接电阻、电抗器或者接入自耦变压器降压并网、晶闸管软并网等措施,但这些并网方法存在着一些问题,要么在并网时会出现较大的冲击电流及电网电压的下降,要么采用消耗功率的元件,要么由于在低风速时发电机输出的交流电压,不足以在系统的直流侧获得足够的直流电压,以满足电压型逆变器的正常工作,因而使得系统在低风速时不能将电能有效地送上电网,系统勉强工作则必然会使得电网获得的电能含有大量的谐波。因此不能利用低风速时候的风能,经济性能比较差,导致风力发电的成本较高,不利于风力发电的推广应用。同步发电机通常在风力发电机输出端和电网之间增加一个由不可控整流器+DCIAC逆变器的电力电子装置,这种并网措施同样存在不能利用低风速风能、经济性能差的问题。交流双馈发电机采用双脉冲整流器作为其并网接口,虽然能很好的解决上述问题,但存在着系统复杂、设备成本高等缺点。电流型脉冲整流器的并网方法具有控制简单、成本较低的优点,该方案在直流侧串联一个大电感目的是提供较稳定的直流电流输入,但大电感会导致系统的动态响应较差,电感损耗也会较大。总的来说目前的可再生能源领域的并网研究也是更多的集中在太阳能上面,对于风能的并网利用研究还是相对较少,导致技术研究上相对滞后。

2.4风力发电机的并网方式的选择

并网运行是目前风力发电的主要形式.各种并网方案有其自身的优缺点。随着风力发电机组容量的增大.存并网时对电网的冲击也越来越大。这种冲击严重时不仅引起电力系统电压的大幅度下降.而且可能对发电机和机械部件(塔架、桨叶及增速器等)造成损坏。如果并网冲击时间过长,还可能使系统瓦解或威胁其他挂网机组的正常运行。因此根据本设计所给资料和以上情况分析可得选择直驱交流永磁低速同步发电机比较合理,由风力机直接驱动低速交流发电机通过工作速度快,驱动功率小,导通压降的IGBT逆变器并网。通过交-直-交转换方式后,使随风速变化的交流电变为满足并网要求的交流电,采用准同期的并网方式降风力发电机并入电网。

2.7 直驱并网结构图

针对上述风能并网问题,采用目前应用较多的直驱式永磁交流同步发电机,设计并网逆变器作为发电机与电网之间的电能转换接口。

如图2.8所示,风力发电并网系统由直驱式风力发电机、卸荷器、并网逆变器等设备组成。当风机达到切入风速的时候,风力发电机发出的交流电能经过整流、调压、逆变后馈入电网。当风速太大的时候,使得风机超载运行时,卸荷部分接入,保证恒功率运行.并网逆变器主电路采用PFC校正部分+DC/AC逆变器的拓扑结构。PFC校正部分由三相不可控整流和DC/DC直流升压斩波环节两部分组成.它与前面所述的方案的最大不同之处就是加入了直流斩波环节。如图2.9所示为并网逆变器主电路框图:

系统中采用直驱式永磁同步发电机将风能转化为电能,经三相不可控整流桥整流为直流后,送入到直流变换电路中。直流变换电路的主要作用是调节直流输出电压,满足逆变电路的工作要求和完成功率因数校正,提高并网逆变器的功率因数并抑制谐波。调节后的直流输出电能逆变为符合并网要求的交流电能后通过滤波器滤波再并入到公用电网。采用这样的主电路结构就能很好的解决低风速时的风力发电机的并网问题。当风速较低的时候。风机转动较慢,由于风机与发电机是直接耦合的,中间没有采用增速齿轮箱,因此发电机输出的电压比较低,在中间加入直流升压环节后,整流后得到的低的直流电压通过直流升压就可以在系统的直流侧获得较高的直流电压,满足逆变电路的正常工作,使得系统可以在风速较低时也能将电能送入电网。同时直流斩波电路还可以完成功率因数校正功能,提高并网逆变装置的功率因数并抑制高次谐波。

2.5本章小结

本章讨论了风力发电系统的基本结构和工作原理以及采用异步发电机、同步发电机和双馈发电机等各种现行风能并网方案的优缺点,提出了本次风能发电系统的并网方案。采用直驱式永磁同步发电机,设计三相不可控整流+Buck直流变换+DC/AC主电路结构的并网逆变器作为与电网的接口,解决了风力发电系统并网以及提高风能利用效率的问题。

未经允许不得转载:中国能源资讯网 » 风力发电机组并网运行方式分析