新能源新闻资讯
政策|项目|技术

技术干货 | 光伏逆变器全方位概述

逆变器也称逆变电源,是将直流电能转变成交流电能的变流装置。光伏逆变器就是应用在太阳能光伏发电系统中 的逆变器,是光伏系统中的一个重要部件。逆变器效率的高低影响着光伏发电系统效率的高低,因此,逆变器的选择非常重要。随着技术的不断发展,光伏逆变器也将向着体积更小、效率更高、性能指标更优越的方向发展。

  工作原理:逆变装置的核心,是逆变开关电路,简称为逆变电路。该电路通过电力电子开关的导通与关断,来完成逆变的功能。

特点:

  (1)要求具有较高的效率。

  由于目前太阳能电池的价格偏高,为了最大限度的利用太阳能电池,提高系统效率,必须设法提高逆变器的效率。

  (2)要求具有较高的可靠性。

  目前光伏电站系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具 备各种保护功能,如:输入直流极性接反保护、交流输出短路保护、过热、过载保护等。

  (3)要求输入电压有较宽的适应范围。

  由于太阳能电池的端电压随负载和日照强度变化而变化。特别是当蓄电池老化时其端电压的变化范围很大,如12V的蓄电池,其端电压可能在 10V~16V之间变化,这就要求逆变器在较大的直流输入电压范围内保证正常工作。

  有关逆变器分类的方法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器使用的半导体器件类型 不同,又可分为晶体管逆变器、晶闸管逆变器及可关断晶闸管逆变器等。根据逆变器线路原理的不同,还可分为自激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆变器等。根据应用在并网系统还是离网系统中又可以分为并网逆变器和离网逆变器。为了便于光电用户选用逆变器,这 里仅以逆变器适用场合的不同进行分类。

  集中逆变器

  集中逆变技术是若干个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGB T功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于 正弦波电流,一般用于大型光伏发电站(>10kW)的系统中。最大特点是系统的功率高,成本低,但由于不同光伏组 串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的 方式会导致逆变过程的效率降低和电户能的下降。同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不 良的影响。最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下 的高效率。

  组串逆变器

  组串逆变器是基于模块化概念基础上的,每个光伏组串(1-5kw)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网,已成为现在国际市场上最流行的逆变器。

  许多大型光伏电厂使用组串逆变器。优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。同时,在组串间引人"主-从"的概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。

  最新的概念为几个逆变器相互组成一个"团队"来代替"主-从"的概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。

  微型逆变器

  在传统的PV系统中,每一路组串型逆变器的直流输入端,会由10块左右光伏电池板串联接入。当10块串联的 电池板中,若有一块不能良好工作,则这一串都会受到影响。若逆变器多路输入使用同一个MPPT,那么各路输入 也都会受到影响,大幅降低发电效率。在实际应用中,云彩,树木,烟囱,动物,灰尘,冰雪等各种遮挡因素都 会引起上述因素,情况非常普遍。而在微型逆变器的PV系统中,每一块电池板分别接入一台微型逆变器,当电池 板中有一块不能良好工作,则只有这一块都会受到影响。其他光伏板都将在最佳工作状态运行,使得系统总体效 率更高,发电量更大。在实际应用中,若组串型逆变器出现故障,则会引起几千瓦的电池板不能发挥作用,而微型逆变器故障造成的影响相当之小。

  功率优化器

  太阳能发电系统加装功率优化器(Optimizer)可大幅提升转换效率,并将逆变器(Inverter)功能化繁为简降低 成本。为实现智慧型太阳能发电系统,装置功率优化器可确实让每一个太阳能电池发挥最佳效能,并随时监控电 池耗损状态。功率优化器是介于发电系统与逆变器之间的装置,主要任务是替代逆变器原本的最佳功率点追踪功 能。功率优化器藉由将线路简化以及单一太阳能电池即对应一个功率优化器等方式,以类比式进行极为快速的最 佳功率点追踪扫描,进而让每一个太阳能电池皆可确实达到最佳功率点追踪,除此之外,还能藉置入通讯晶片随 时随地监控电池状态,即时回报问题让相关人员尽速维修。

  逆变器不仅具有直交流变换功能,还具有最大限度地发挥太阳电池性能的功能和系统故障保护功能。归纳起来有自动运行和停机功能、最大功率跟踪控制功能、防单独运行功能(并网系统用)、自动电压调整功能(并网系统用)、直流检测功能(并网系统用)、直流接地检测功能(并网系统用)。这里简单介绍自动运行和停机功能及最大功率跟踪控制功能。

  逆变器在光伏系统中的应用

  (1)自动运行和停机功能

  早晨日出后,太阳辐射强度逐渐增强,太阳电池的输出也随之增大,当达到逆变器工作所需的输出功率后,逆变器即自动开始运行。进入运行后,逆变器便时时刻刻监视太阳电池组件的输出,只要太阳电池组件的输出功率大于逆变器工作所需的输出功率,逆变器就持续运行;直到日落停机,即使阴雨天逆变器也能运行。当太阳电池组件输出变小,逆变器输出接近0时,逆变器便形成待机状态。

  (2)最大功率跟踪控制功能

  太阳电池组件的输出是随太阳辐射强度和太阳电池组件自身温度(芯片温度)而变化的。另外由于太阳电池组件具有电压随电流增大而下降的特性,因此存在能获取最大功率的最佳工作点。太阳辐射强度是变化着的,显然最佳工作点也是在变化的。相对于这些变化,始终让太阳电池组件的工作点处于最大功率点,系统始终从太阳电池组件获取最大功率输出,这种控制就是最大功率跟踪控制。太阳能发电系统用的逆变器的最大特点就是包括了最大功率点跟踪(MPPT)这一功能。

  1.输出电压的稳定度

  2.输出电压的波形失真度

  3.额定输出频率

  4.负载功率因数

  5.逆变器效率

  6、额定输出电流(或额定输出容量)

  7、保护措施

  8.起动特性

  9.噪声

  逆变器的选用,首先要考虑具有足够的额定容量,以满足最大负荷下设备对电功率的要求。对于以单一设备为负载的逆变器,其额定容量的选取较为简单。

  当用电设备为纯阻性负载或功率因数大于0.9时,选取逆变器的额定容量为用电设备容量的1.1~1.15倍即可。同时逆变器还应具有抗容性和感性负载冲击的能力。

  对一般电感性负载,如电机、冰箱、空调、洗衣机、大功率水泵等,在起动时,其瞬时功率可能是其额定功率的5~6倍,此时,逆变器将承受很大的瞬时浪涌。针对此类系统,逆变器的额定容量应留有充分的余量,以保证负载能可靠起动,高性能的逆变器可做到连续多次满负荷起动而不损坏功率器件。小型逆变器为了自身安全,有时需采用软起动或限流起动的方式。

  另外,逆变器还要有一定的过载能力,当输入电压与输出功率为额定值,环境温度为25℃时,逆变器连续可靠工作时间应不低于4h;当输入电压为额定值,输出功率为额定值的125%时,逆变器安全工作时间应不低于1min;当输入电压为额定值,输出功率为额定值的150%时,逆变器安全工作时间应不低于10s。

  应用举例:

  光伏系统中主要负载是150W的电冰箱,正常工作时选择额定容量为180W的交流逆变器即能可靠工作,但是由于电冰箱是感性负载,在起动瞬间其功率消耗可达额定功率的5~6倍之多,因此逆变器的输出功率在负载起动时可达到800W,考虑到逆变器的过载能力,选用500W逆变器即能可靠工作。

  当系统中存在多个负载时,逆变器容量的选取还应考虑几个用电负载同时工作的可能性,即"负载同时系数"。

  逆变器安装维修的注意事项:

  1、在安装前首先应该检查逆变器是否在运输过程中有无损坏。

  2、在选择安装场地时,应该保证周围内没有任何其他电力电子设备的干扰。

  3、在进行电气连接之前,务必采用不透光材料将光伏电池板覆盖或断开直流侧断路器。暴露于阳光,光伏阵列将会产生危险电压。

  4、所有安装操作必须且仅由专业技术人员完成。

  5、光伏系统发电系统中所使用线缆必须连接牢固,良好绝缘以及规格合适。

  6、所有的电气安装必须满足当地以及国家电气标准。

  7、仅当得到当地电力部门许可后并由专业技术人员完成所有电气连接后才可将逆变器并网。

  8、在进行任何维修工作前,应首先断开逆变器与电网的电气连接,然后断开直流侧电气连接。

  9、等待至少5分钟直到内部元件放电完毕方可进行维修工作。

  10、任何影响逆变器安全性能的故障必须立即排除方可再次开启逆变器。

  11、避免不必要的电路板接触。

  12、遵守静电防护规范,佩戴防静电手环。

  13、注意并遵守产品上的警告标识。

  14、操作前初步目视检查设备有无损坏或其它危险状态。

  15、注意逆变器热表面。例如功率半导体的散热器等,在逆变器断电后一段时间内,仍保持较高温度。

  光伏逆变器的安装流程:

  对于太阳能逆变器来讲,提高电源的转换效率是一个永恒的课题,但是当系统的效率越来越高,几乎接近100%时,进一步的效率改善会伴随着性价比的低下,因此,如何保持一个很高的效率,又能维持很好的价格竞争力将是当前的重要课题。

  与逆变器效率的改善努力相比,如何提高整个逆变系统的效率,正逐渐成为太阳能系统的另一个重要课题。在一个太阳能阵列中,当局部的2~3%面积的阴影出现时,对采用一个MPPT功能的逆变器来讲,此时的系统输出电力恶劣时甚至会出现20%左右的功率下降!为了更好地适应类似这样的状况针对单一或部分太阳能组件,采用一对一的MPPT或多个MPPT控制功能是十分有效的方法。

  由于逆变系统处于并网运行的状况,系统对地的漏电会造成严重的安全问题;此外,为了提高系统的效率,太阳能阵列大多会被串联成很高的直流输出电压使用;为此,在电极间因异常状况的发生,很容易产生出直流电弧,由于直流电压高,非常不容易灭弧,极容易导致火灾。随着太阳能逆变系统的广泛采用,系统安全性的问题也将是逆变技术的重要部分。

  此外,电力系统正在迎来智能电网技术的快速发展和普及。大量的太阳能等新能源电力的系统并网,给智能电网系统的稳定性提出了新的技术挑战。设计出能够更加快速、准确、智能化地兼容智能电网的逆变系统,将成为今后太阳能逆变系统的必要条件。

  总的来说,逆变技术的发展是随着电力电子技术、微电子技术和现代控制理论的发展而发展。随着时间的推移,逆变技术正向着频率更高、功率更大、效率更高、体积更小的方向发展。

未经允许不得转载:中国能源资讯网 » 技术干货 | 光伏逆变器全方位概述